Inhibition of angiogenesis contributes to enhanced radiation response in tumors following MDM2 inhibition by AMG 232

Lauryn Werner1, Shyhmin Huang1, Eric A. Armstrong1, Fang Ma1, Jude Canon2 and Paul M. Harari1
1Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI. 2 Oncology Research, Amgen, Inc. Thousand Oaks, CA.

Introduction

- AMG 232 is an effective p53 activator which acts by selectively inhibiting MDM2-p53 interaction.
- We previously elucidated the capacity of AMG 232 to augment radiation response across a spectrum of human tumors with wt p53.
- In the current study, we examine the capacity of AMG 232 to inhibit angiogenesis and the radiation response of human endothelial cells.

Figure 1: Combining AMG 232 and radiation exhibits anti-tumor and anti-angiogenic effects in H460 & SJSA-1 tumor xenografts

Figures 2 & 3: AMG 232 inhibits the proliferation and function of human endothelial cells

Figures 4 & 5: Combining AMG 232 with radiation causes cell cycle G2/M arrest in HUVEC cells

Figure 6: AMG 232 enhances tumor radiosensitivity under hypoxia

Conclusions

- AMG 232 augments radiation response by inhibiting tumor cell proliferation and by interfering with tumor-associated angiogenesis. (1).
- The anti-angiogenic impact of AMG 232 may result from the direct inhibition of the growth and function of endothelial cells.(2).
- AMG 232 enhances radiosensitivity of endothelial cells in part by inhibiting the repair of radiation-induced double strand breaks (3), which results in a significant increase of HUVEC cells in cell cycle G2/M arrest with unrepaired lethal DNA damage (4&5).
- Under hypoxic conditions, AMG 232 still demonstrates a significant capacity to augment radiation response in tumor cells (6). All together, our findings reveal the potential anti-angiogenic capacity of AMG 232 that may contribute to the augmentation of radiation response observed in xenograft studies.

Poster is displayed in Harari lab web at https://www.humanc.wisc.edu