University of Wisconsin–Madison
Andrew Shepard, PhD 2018

Andrew Shepard, PhD

Radiation Oncology Physics Resident

Department of Human Oncology

Education

PhD, University of Wisconsin-Madison, Medical Physics (2018)

MS, University of Wisconsin-Madison, Medical Physics (2015)

BS, University of Wisconsin-Madison, Nuclear Engineering (2015)

Selected Honors and Awards

Standard Imaging Travel Award (2017)

AAPM Summer Undergraduate Fellowship (2013)

Research Focus

Motion management, stereotactic radiosurgery (SRS)

  • Technical Note: Characterization of clinical linear accelerator triggering latency for motion management system development. Med Phys
    Shepard AJ, Matrosic CK, Radtke JL, Jupitz SA, Culberson WS, Bednarz BP
    2018 Nov; 45 (11): 4816-4821
    • More

      PURPOSE: Latencies for motion management systems have previously been presented as guidelines for system development and implementation. These guidelines consider the overall system latency, including data acquisition, algorithm processing, and linac triggering time. However, during system development, the triggering latency of the clinical linear accelerator is often considered fixed. This paper presents a method to decouple the linac-only triggering latency from the total system latency such that latency can be considered in terms of only the linac-independent aspects of the system.

      METHODS: The linac-only latency was investigated by considering the time at which a linac response was observed relative to the time at which a beam-on/off triggering signal was sent to the linac. The relative time between the two signals was analyzed using a multichannel oscilloscope with input signals from a custom gating box to manually trigger the beam state as well as a diode positioned at beam isocenter to monitor the linac response. The beam-on/off latency was measured at multiple energies (6/18 MV) and repetition rates (100-600 MU/min) to investigate beam setting dependencies.

      RESULTS: The measured latency was observed to be dependent on the accelerator settings for repetition rate and energy, with beam-on latencies decreasing with increasing repetition rate and decreasing energy. In contrast, the opposite trend was present for the observed beam-off latency. At 600 MU/min, beam-on/off latencies were observed to be 3.37/1.45 ms for a 6 MV beam and 6.02/0.73 ms for an 18 MV beam. Negative latencies were possible for beam-off measurements due to the mechanical latency being less than the pulse separation at given repetition rates.

      CONCLUSIONS: The linac latency associated with triggering the beam-on/off was determined to have a minor contribution to the total allowable system latency; thus, the majority of the total system latency can be attributed to linac-independent factors.

      View details for PubMedID 30220085
  • Development of Compton lens design for increased dose rate in linear accelerator based SRS. J Radiosurg SBRT
    Shepard AJ, Bender ET
    2016; 4 (3): 225-234
    • More

      Purpose: To develop a fundamentally new stereotactic radiosurgery (SRS) collimator design which utilizes initially off-axis Compton scattered photons to increase the dose rate at isocenter for small field treatments.

      Materials and methods: The proposed design added a set of conical slits to a standard cylindrical collimator to allow for scattered photons within the collimator to still contribute to the overall target dose. The design optimization was broken down into two regions: a solid interaction plate and a Compton slit region. The interaction plate geometry was developed to facilitate Compton scattering towards the target, and the Compton slit geometry was optimized to allow for Compton scattered photons to travel unattenuated towards the target. A series of sensitivity studies were performed using Monte Carlo N-Particle (MCNP6) Transport Code to optimize the geometry of the collimator focusing on the material, thickness, cone size, number of slits and slit width.

      Results: An optimized collimator design incorporating 6 slits for a 4 mm target allowed for an increase in the dose rate of 3.5% while limiting off axis increases between 1 and 5 cm to an average of less than 1% relative to standard collimator designs.

      Conclusion: Preliminary designs present a proof of concept and suggest the potential for increases in dose rate for linac-based SRS systems. These designs have been able to achieve increases while maintaining a relatively low dose rate outside of the target. Further exploration into non-linear optimization of the slits and interaction plate geometry may lead to further increases than presently demonstrated.This concept warrants further study with actual measurement and to be tested for its practicality in clinical use.

      View details for PubMedID 29296447
  • A block matching based approach with multiple simultaneous templates for the real-time 2D ultrasound tracking of liver vessels. Med Phys
    Shepard AJ, Wang B, Foo TKF, Bednarz BP
    2017 Nov; 44 (11): 5889-5900
    • More

      PURPOSE: The implementation of motion management techniques in radiation therapy can aid in mitigating uncertainties and reducing margins. For motion management to be effective, it is necessary to track key structures both accurately and at a real-time speed. Therefore, the focus of this work was to develop a 2D algorithm for the real-time tracking of ultrasound features to aid in radiation therapy motion management.

      MATERIALS AND METHODS: The developed algorithm utilized a similarity measure-based block matching algorithm incorporating training methods and multiple simultaneous templates. The algorithm is broken down into three primary components, all of which use normalized cross-correlation (NCC) as a similarity metric. First, a global feature shift to account for gross displacements from the previous frame is determined using large block sizes which encompass the entirety of the feature. Second, the most similar reference frame is chosen from a series of training images that are accumulated during the first K frames of tracking to aid in contour consistency and provide a starting point for the localized template initialization. Finally, localized block matching is performed through the simultaneous use of both a training frame and the previous frame. The localized block matching utilizes a series of templates positioned at the boundary points of the training and previous contours. The weighted final boundary points from both the previous and the training frame are ultimately combined and used to determine an affine transformation from the previous frame to the current frame.

      RESULTS: A mean tracking error of 0.72 ± 1.25 mm was observed for 85 point-landmarks across 39 ultrasound sequences relative to manual ground truth annotations. The image processing speed per landmark with the GPU implementation was between 41 and 165 frames per second (fps) during the training set accumulation, and between 73 and 234 fps after training set accumulation. Relative to a comparable multithreaded CPU approach using OpenMP, the GPU implementation resulted in speedups between -30% and 355% during training set accumulation, and between -37% and 639% postaccumulation.

      CONCLUSIONS: Initial implementations indicated an accuracy that was comparable to or exceeding those achieved by alternative 2D tracking methods, with a computational speed that is more than sufficient for real-time applications in a radiation therapy environment. While the overall performance reached levels suitable for implementation in radiation therapy, the observed increase in failures for smaller features, as well as the algorithm's inability to be applied to nonconvex features warrants additional investigation to address the shortcomings observed.

      View details for PubMedID 28898419

Contact Information

Andrew Shepard, PhD

600 Highland Avenue, K4/b100,
Madison, WI 53792
Email