portrait of John Floberg, MD, PhD

John Floberg, MD, PhD

Assistant Professor (CHS)

Department of Human Oncology

I am an assistant professor in the Department of Human Oncology. I am originally from Minneapolis and completed my MD and PhD at the University of Wisconsin and completed my residency in radiation oncology at Washington University in St. Louis.

Clinically, I focus on the treatment of genitourinary cancers. As a radiation oncologist, I collaborate with urologists, medical oncologists, radiologists, pathologists and other specialists to provide patients with the best care possible. I am proud to work at this cancer center where we are able to offer patients with genitourinary cancers state-of-the-art treatments, including high-dose-rate prostate brachytherapy, stereotactic body radiation therapy (SBRT), MRI-guided radiation therapy and targeted radiopharmaceuticals such as Xofigo (Radium-223) in patients with metastatic prostate cancer. I also have the pleasure of teaching residents and medical students in the clinic and training them in these techniques.

My research is focused on advanced imaging, such as positron emission tomography (PET) and MRI. In the past several years, there has been an explosion of advanced imaging modalities utilized in prostate cancer. These images could provide us with key information about a cancer’s biology, which could in turn help us understand how to best treat an individual patient and may also help us develop new and better therapies. As in the clinic, I have the pleasure of working with students in my research. I enjoy seeing them develop their own ideas and become independent.

Education

Residency, Washington University in St. Louis, Radiation Oncology (2019)

Internship, Hennepin County Medical Center , (2015)

MD, University of Wisconsin, (2014)

PhD, University of Wisconsin, Medical Physics (2012)

BA, Carleton College, Physics (2005)

Academic Appointments

Assistant Professor (CHS), Department of Human Oncology (2019)

Selected Honors and Awards

Leonard B. Holman Research Pathway (2019)

Best of ASTRO (2018)

Radiation Research Society Scholars-in-Training Travel Award (2018)

Radiological Society of North America Research Resident Grant (2017)

Radiological Society of North America Annual Meeting Travel Grant (2017)

ASTRO Residents/Fellows in Radiation Oncology Research Seed Grant (2016)

Alpha Omega Alpha Honor Medical Society (2013)

Boards, Advisory Committees and Professional Organizations

Member, American Society for Radiation Oncology (2015-present)

Member, American Board of Radiology (2015-present)

Member, Radiation Research Society (2017-present)

Member, Radiological Society of North America (2008-present)

Member, Society of Nuclear Medicine and Molecular Imaging (2008-present)

Research Focus

Genitourinary cancers


Dr. John Floberg is an assistant professor in the Department of Human Oncology. His clinical focus is on the treatment of genitourinary cancers.  His research is focused on advanced imaging such as positron emission tomography (PET) and MRI.

  • Using <sup>18</sup>F-DCFPyL Prostate-Specific Membrane Antigen-Directed Positron Emission Tomography/Magnetic Resonance Imaging to Define Intraprostatic Boosts for Prostate Stereotactic Body Radiation Therapy Advances in radiation oncology
    Floberg JM, Wells SA, Ojala D, Bayliss RA, Hill PM, Morris BA, Morris ZS, Ritter M, Cho SY
    2023 Apr 9;8(5):101241. doi: 10.1016/j.adro.2023.101241. eCollection 2023 Sep-Oct.
    • More

      PURPOSE: The recently reported FLAME trial demonstrated a biochemical disease-free survival benefit to using a focal intraprostatic boost to multiparametric magnetic resonance imaging (mpMRI)-identified lesions in men with localized prostate cancer treated with definitive radiation therapy. Prostate-specific membrane antigen (PSMA)-directed positron emission tomography (PET) may identify additional areas of disease. In this work, we investigated using both PSMA PET and mpMRI in planning focal intraprostatic boosts using stereotactic body radiation therapy (SBRT).

      METHODS AND MATERIALS: We evaluated a cohort of patients (n = 13) with localized prostate cancer who were imaged with 2-(3-(1-carboxy-5-[(6-[18F]fluoro-pyridine-2-carbonyl)-amino]-pentyl)-ureido)-pentanedioic acid (18F-DCFPyL) PET/MRI on a prospective imaging trial before undergoing definitive therapy. The number of lesions concordant (overlapping) and discordant (no overlap) on PET and MRI was assessed. Overlap between concordant lesions was evaluated using the Dice and Jaccard similarity coefficients. Prostate SBRT plans were created fusing the PET/MRI imaging to computed tomography scans acquired the same day. Plans were created using only MRI-identified lesions, only PET-identified lesions, and the combined PET/MRI lesions. Coverage of the intraprostatic lesions and doses to the rectum and urethra were assessed for each of these plans.

      RESULTS: The majority of lesions (21/39, 53.8%) were discordant between MRI and PET, with more lesions seen by PET alone (12) than MRI alone (9). Of lesions that were concordant between PET and MRI, there were still areas that did not overlap between scans (average Dice coefficient, 0.34). Prostate SBRT planning using all lesions to define a focal intraprostatic boost provided the best coverage of all lesions without compromising constraints on the rectum and urethra.

      CONCLUSIONS: Using both mpMRI and PSMA-directed PET may better identify all areas of gross disease within the prostate. Using both imaging modalities could improve the planning of focal intraprostatic boosts.

      PMID:37250282 | PMC:PMC10209128 | DOI:10.1016/j.adro.2023.101241


      View details for PubMedID 37250282
  • Toxicity and Patient-Reported Quality-of-Life Outcomes After Prostate Stereotactic Body Radiation Therapy With Focal Boost to Magnetic Resonance Imaging-Identified Prostate Cancer Lesions: Results of a Phase 2 Trial International journal of radiation oncology, biology, physics
    Morris BA, Holmes EE, Anger NJ, Cooley G, Schuster JM, Hurst N, Baschnagel AM, Bassetti MF, Blitzer GC, Chappell RJ, Bayliss RA, Morris ZS, Ritter MA, Floberg JM
    2023 Nov 1;117(3):613-623. doi: 10.1016/j.ijrobp.2023.05.004. Epub 2023 May 12.
    • More

      PURPOSE: In this prospective phase 2 trial, we investigated the toxicity and patient-reported quality-of-life outcomes in patients treated with stereotactic body radiation therapy (SBRT) to the prostate gland and a simultaneous focal boost to magnetic resonance imaging (MRI)-identified intraprostatic lesions while also de-escalating dose to the adjacent organs at risk.

      METHODS AND MATERIALS: Eligible patients included low- or intermediate-risk prostate cancer (Gleason score ≤7, prostate specific antigen ≤20, T stage ≤2b). SBRT was prescribed to 40 Gy in 5 fractions delivered every other day to the prostate, with any areas of high disease burden (MRI-identified prostate imaging reporting and data system 4 or 5 lesions) simultaneously escalated to 42.5 to 45 Gy and areas overlapping organs at risk (within 2 mm of urethra, rectum, and bladder) constrained to 36.25 Gy (n = 100). Patients without a pretreatment MRI or without MRI-identified lesions were treated to dose of 37.5 Gy with no focal boost (n = 14).

      RESULTS: From 2015 to 2022, a total of 114 patients were enrolled with a median follow-up of 42 months. No acute or late grade 3+ gastrointestinal (GI) toxicity was observed. One patient developed late grade 3 genitourinary (GU) toxicity at 16 months. In patients treated with focal boost (n = 100), acute grade 2 GU and GI toxicity was seen in 38% and 4% of patients, respectively. Cumulative late grade 2+ GU and GI toxicities at 24 months were 13% and 5% respectively. Patient-reported outcomes showed no significant long-term change from baseline in urinary, bowel, hormonal, or sexual quality-of-life scores after treatment.

      CONCLUSIONS: SBRT to a dose of 40 Gy to the prostate gland with a simultaneous focal boost up to 45 Gy is well tolerated with similar rates of acute and late grade 2+ GI and GU toxicity as seen in other SBRT regimens without intraprostatic boost. Moreover, no significant long-term changes were seen in patient-reported urinary, bowel, or sexual outcomes from pretreatment baseline.

      PMID:37179035 | DOI:10.1016/j.ijrobp.2023.05.004


      View details for PubMedID 37179035
  • A clinical-grade liquid biomarker detects neuroendocrine differentiation in prostate cancer The Journal of clinical investigation
    Zhao SG, Sperger JM, Schehr JL, McKay RR, Emamekhoo H, Singh A, Schultz ZD, Bade RM, Stahlfeld CN, Gilsdorf CS, Hernandez CI, Wolfe SK, Mayberry RD, Krause HM, Bootsma M, Helzer KT, Rydzewski N, Bakhtiar H, Shi Y, Blitzer G, Kyriakopoulos CE, Kosoff D, Wei XX, Floberg J, Sethakorn N, Sharifi M, Harari PM, Huang W, Beltran H, Choueiri TK, Scher HI, Rathkopf DE, Halabi S, Armstrong AJ, Beebe DJ, Yu M, Sundling KE, Taplin M, Lang JM
    2022 Nov 1;132(21):e161858. doi: 10.1172/JCI161858.
    • More

      BackgroundNeuroendocrine prostate cancer (NEPC) is an aggressive subtype, the presence of which changes the prognosis and management of metastatic prostate cancer.MethodsWe performed analytical validation of a Circulating Tumor Cell (CTC) multiplex RNA qPCR assay to identify the limit of quantification (LOQ) in cell lines, synthetic cDNA, and patient samples. We next profiled 116 longitudinal samples from a prospectively collected institutional cohort of 17 patients with metastatic prostate cancer (7 NEPC, 10 adenocarcinoma) as well as 265 samples from 139 patients enrolled in 3 adenocarcinoma phase II trials of androgen receptor signaling inhibitors (ARSIs). We assessed a NEPC liquid biomarker via the presence of neuroendocrine markers and the absence of androgen receptor (AR) target genes.ResultsUsing the analytical validation LOQ, liquid biomarker NEPC detection in the longitudinal cohort had a per-sample sensitivity of 51.35% and a specificity of 91.14%. However, when we incorporated the serial information from multiple liquid biopsies per patient, a unique aspect of this study, the per-patient predictions were 100% accurate, with a receiver-operating-curve (ROC) AUC of 1. In the adenocarcinoma ARSI trials, the presence of neuroendocrine markers, even while AR target gene expression was retained, was a strong negative prognostic factor.ConclusionOur analytically validated CTC biomarker can detect NEPC with high diagnostic accuracy when leveraging serial samples that are only feasible using liquid biopsies. Patients with expression of NE genes while retaining AR-target gene expression may indicate the transition to neuroendocrine differentiation, with clinical characteristics consistent with this phenotype.FundingNIH (DP2 OD030734, 1UH2CA260389, R01CA247479, and P30 CA014520), Department of Defense (PC190039 and PC200334), and Prostate Cancer Foundation (Movember Foundation - PCF Challenge Award).

      PMID:36317634 | PMC:PMC9621140 | DOI:10.1172/JCI161858


      View details for PubMedID 36317634
  • Use of Stereotactic Magnetic Resonance-Guided Online Adaptive Radiation Therapy for Treatment of a Pelvic Recurrence of Prostate Cancer in a Patient With an Orthotopic Neobladder Advances in radiation oncology
    Floberg JM, Blitzer GC, Yadav P
    2022 Apr 8;7(5):100958. doi: 10.1016/j.adro.2022.100958. eCollection 2022 Sep-Oct.
    • More

      PMID:35647410 | PMC:PMC9130090 | DOI:10.1016/j.adro.2022.100958


      View details for PubMedID 35647410
  • Longitudinal Molecular Profiling of Circulating Tumor Cells in Metastatic Renal Cell Carcinoma Journal of clinical oncology : official journal of the American Society of Clinical Oncology
    Bootsma M, McKay RR, Emamekhoo H, Bade RM, Schehr JL, Mannino MC, Singh A, Wolfe SK, Schultz ZD, Sperger J, Xie W, Signoretti S, Kyriakopoulos CE, Kosoff D, Abel EJ, Helzer KT, Rydzewski N, Bakhtiar H, Shi Y, Blitzer G, Bassetti M, Floberg J, Yu M, Sethakorn N, Sharifi M, Harari PM, Choueiri TK, Lang JM, Zhao SG
    2022 Nov 1;40(31):3633-3641. doi: 10.1200/JCO.22.00219. Epub 2022 May 26.
    • More

      PURPOSE: Liquid biopsies in metastatic renal cell carcinoma (mRCC) provide a unique approach to understand the molecular basis of treatment response and resistance. This is particularly important in the context of immunotherapies, which target key immune-tumor interactions. Unlike metastatic tissue biopsies, serial real-time profiling of mRCC is feasible with our noninvasive circulating tumor cell (CTC) approach.

      METHODS: We collected 457 longitudinal liquid biopsies from 104 patients with mRCC enrolled in one of two studies, either a prospective cohort or a phase II multicenter adaptive immunotherapy trial. Using a novel CTC capture and automated microscopy platform, we profiled CTC enumeration and expression of HLA I and programmed cell death-ligand 1 (PD-L1). Given their diametric immunological roles, we focused on the HLA I to PD-L1 ratio (HP ratio).

      RESULTS: Patients with radiographic responses showed significantly lower CTC abundances throughout treatment. Furthermore, patients whose CTC enumeration trajectory was in the highest quartile (> 0.12 CTCs/mL annually) had shorter overall survival (median 17.0 months v 21.1 months, P < .001). Throughout treatment, the HP ratio decreased in patients receiving immunotherapy but not in patients receiving tyrosine kinase inhibitors. Patients with an HP ratio trajectory in the highest quartile (≥ 0.0012 annually) displayed significantly shorter overall survival (median 18.4 months v 21.2 months, P = .003).

      CONCLUSION: In the first large longitudinal CTC study in mRCC to date to our knowledge, we identified the prognostic importance of CTC enumeration and the change over time of both CTC enumeration and the HP ratio. These insights into changes in both tumor burden and the molecular profile of tumor cells in response to different treatments provide potential biomarkers to predict and monitor response to immunotherapy in mRCC.

      PMID:35617646 | PMC:PMC9622626 | DOI:10.1200/JCO.22.00219


      View details for PubMedID 35617646
  • Combining Stereotactic Body Radiotherapy and Microwave Ablation Appears Safe and Feasible for Renal Cell Carcinoma in an Early Series Clinical genitourinary cancer
    Blitzer GC, Wojcieszynski A, Abel EJ, Best S, Lee FT, Hinshaw JL, Wells S, Ziemlewicz TJ, Lubner MG, Alexander M, Yadav P, Bayouth JE, Floberg J, Cooley G, Harari PM, Bassetti MF
    2021 Oct;19(5):e313-e318. doi: 10.1016/j.clgc.2021.04.010. Epub 2021 Apr 20.
    • More

      Microwave (MW) ablation and stereotactic body radiation therapy (SBRT) are both used in treating inoperable renal cell carcinoma (RCC). MW ablation and SBRT have potentially complementary advantages and limitations. Combining SBRT and MW ablation may optimize tumor control and toxicity for patients with larger (> 5 cm) RCCs or those with vascular involvement. Seven patients with RCC were treated at our institution with combination of SBRT and MW ablation, median tumor size of 6.4 cm. Local control was 100% with a median follow-up of 15 months. Four patients experienced grade 2 nausea during SBRT. Three patients experienced toxicities after MW ablation, 2 with grade 1 hematuria and 1 with grade 3 retroperitoneal bleed/collecting system injury. Median eGFR (estimated glomerular filtration rate) preceding and following SBRT and MW ablation was 69 mL/min/1.73 m2 and 68 mL/min/1.73 m2 (P = .19), respectively. In patients who are not surgical candidates, larger RCCs or those with vascular invasion are challenging to treat. Combination treatment with SBRT and MW ablation may balance the risks and benefits of both therapies and demonstrates high local control in our series. MW ablation and SBRT have potentially complementary advantages and limitations.

      PMID:34024743 | DOI:10.1016/j.clgc.2021.04.010


      View details for PubMedID 34024743
  • Standardized Uptake Value for <sup>18</sup>F-Fluorodeoxyglucose Is a Marker of Inflammatory State and Immune Infiltrate in Cervical Cancer Clinical cancer research : an official journal of the American Association for Cancer Research
    Floberg JM, Zhang J, Muhammad N, DeWees TA, Inkman M, Chen K, Lin AJ, Rashmi R, Jayachandran K, Edelson BT, Siegel BA, Dehdashti F, Grigsby PW, Markovina S, Schwarz JK
    2021 Aug 1;27(15):4245-4255. doi: 10.1158/1078-0432.CCR-20-4450. Epub 2021 Apr 5.
    • More

      PURPOSE: Chemoradiotherapy for locally advanced cervical cancer fails in over a third of patients. Biomarkers with therapeutic implications are therefore needed. We investigated the relationship between an established prognostic marker, maximum standardized uptake value (SUVmax) on 18F-fluorodeoxyglucose positron emission tomography, and the inflammatory and immune state of cervical cancers.

      EXPERIMENTAL DESIGN: An SUVmax most prognostic for freedom from progression (FFP) was identified and compared with known prognostic clinical variables in a cohort of 318 patients treated with definitive radiation with prospectively collected clinical data. Gene set enrichment analysis (GSEA) and CIBERSORT of whole-transcriptome data from 68 patients were used to identify biological pathways and immune cell subpopulations associated with high SUVmax. IHC using a tissue microarray (TMA, N = 82) was used to validate the CIBERSORT findings. The impact of macrophages on cervical cancer glucose metabolism was investigated in coculture experiments.

      RESULTS: SUVmax <11.4 was most prognostic for FFP (P = 0.001). The GSEA showed that high SUVmax is associated with increased gene expression of inflammatory pathways, including JAK/STAT3 signaling. CIBERSORT and CD68 staining of the TMA showed high SUVmax tumors are characterized by a monocyte-predominant immune infiltrate. Coculture of cervical cancer cells with macrophages or macrophage-conditioned media altered glucose uptake, and IL6 and JAK/STAT3 signaling contribute to this effect.

      CONCLUSIONS: SUVmax is a prognostic marker in cervical cancer that is associated with activation of inflammatory pathways and tumor infiltration of myeloid-derived immune cells, particularly macrophages. Macrophages contribute to changes in cervical cancer glucose metabolism.See related commentary by Williamson et al., p. 4136.

      PMID:33820781 | PMC:PMC8338789 | DOI:10.1158/1078-0432.CCR-20-4450


      View details for PubMedID 33820781
  • Alteration of Cellular Reduction Potential Will Change <sup>64</sup>Cu-ATSM Signal With or Without Hypoxia Journal of nuclear medicine : official publication, Society of Nuclear Medicine
    Floberg JM, Wang L, Bandara N, Rashmi R, Mpoy C, Garbow JR, Rogers BE, Patti GJ, Schwarz JK
    2020 Mar;61(3):427-432. doi: 10.2967/jnumed.119.230805. Epub 2019 Oct 4.
    • More

      Therapies targeting reductive/oxidative (redox) metabolism hold potential in cancers resistant to chemotherapy and radiation. A redox imaging marker would help identify cancers susceptible to redox-directed therapies. Copper(II)-diacetyl-bis(4-methylthiosemicarbazonato) (Cu-ATSM) is a PET tracer developed for hypoxia imaging that could potentially be used for this purpose. We aimed to demonstrate that Cu-ATSM signal is dependent on cellular redox state, irrespective of hypoxia. Methods: We investigated the relationship between 64Cu-ATSM signal and redox state in human cervical and colon cancer cells. We altered redox state using drug strategies and single-gene mutations in isocitrate dehydrogenases (IDH1/2). Concentrations of reducing molecules were determined by spectrophotometry and liquid chromatography-mass spectrometry and compared with 64Cu-ATSM signal in vitro. Mouse models of cervical cancer were used to evaluate the relationship between 64Cu-ATSM signal and levels of reducing molecules in vivo, as well as to evaluate the change in 64Cu-ATSM signal after redox-active drug treatment. Results: A correlation exists between baseline 64Cu-ATSM signal and cellular concentration of glutathione, nicotinamide adenine dinucleotide phosphate (NADPH), and nicotinamide adenine dinucleotide (NADH). Altering NADH and NADPH metabolism using drug strategies and IDH1 mutations resulted in significant changes in 64Cu-ATSM signal under normoxic conditions. Hypoxia likewise changed 64Cu-ATSM signal, but treatment of hypoxic cells with redox-active drugs resulted in a more dramatic change than hypoxia alone. A significant difference in NADPH was seen between cervical tumor orthotopic implants in vivo, without a corresponding difference in 64Cu-ATSM signal. After treatment with β-lapachone, there was a change in 64Cu-ATSM signal in xenograft tumors smaller than 50 mg but not in larger tumors. Conclusion:64Cu-ATSM signal reflects redox state, and altering redox state impacts 64Cu-ATSM metabolism. Our animal data suggest there are other modulating factors in vivo. These findings have implications for the use of 64Cu-ATSM as a predictive marker for redox therapies, though further in vivo work is needed.

      PMID:31586008 | PMC:PMC7067520 | DOI:10.2967/jnumed.119.230805


      View details for PubMedID 31586008
  • Manipulation of Glucose and Hydroperoxide Metabolism to Improve Radiation Response Seminars in radiation oncology
    Floberg JM, Schwarz JK
    2019 Jan;29(1):33-41. doi: 10.1016/j.semradonc.2018.10.007.
    • More

      Dysregulated glucose and redox metabolism are near universal features of cancers. They therefore represent potential selectively toxic metabolic targets. This review outlines the preclinical and clinical data for targeting glucose and hydroperoxide metabolism in cancer, with a focus on drug strategies that have the most available evidence. In particular, inhibition of glycolysis using 2-deoxyglucose, and inhibition of redox metabolism using the glutathione pathway inhibitor buthionine sulfoximine and the thioredoxin pathway inhibitor auranofin, have shown promise in preclinical studies to increase sensitivity to chemotherapy and radiation by increasing intracellular oxidative stress. Combined inhibition of glycolysis, glutathione, and thioredoxin pathways sensitizes highly glycolytic, radioresistant cancer models in vitro and in vivo. Although the preclinical data support this approach, clinical data are limited to exploratory trials using a single drug in combination with either chemotherapy or radiation. Open research questions include optimizing drug strategies for targeting glycolysis and redox metabolism, determining the appropriate timing for administering this therapy with concurrent chemotherapy and radiation, and identifying biomarkers to determine the cancers that would benefit most from this approach. Given the quality of preclinical evidence, dual targeting of glycolysis and redox metabolism in combination with chemotherapy and radiation should be further evaluated in clinical trials.

      PMID:30573182 | PMC:PMC6310057 | DOI:10.1016/j.semradonc.2018.10.007


      View details for PubMedID 30573182
  • Pretreatment metabolic tumor volume as a prognostic factor in HPV-associated oropharyngeal cancer in the context of AJCC 8th edition staging Head & neck
    Floberg JM, DeWees TA, Chin R, Garsa AA, Dehdashti F, Nussenbaum B, Oppelt PJ, Adkins DR, Gay HA, Thorstad WL
    2018 Oct;40(10):2280-2287. doi: 10.1002/hed.25337. Epub 2018 Jul 26.
    • More

      BACKGROUND: This study evaluates the prognostic significance of 18 F-fluorodeoxyglucose-positron emission tomography ([F-18]FDG-PET)-derived metabolic tumor volume (MTV) in human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinomas (OPSCCs) in the context of AJCC 8th edition staging.

      METHODS: We performed a retrospective study of HPV-associated OPSCCs treated with postoperative or definitive radiation. The prognostic significance of pretreatment MTV for freedom from recurrence (FFR), freedom from distant metastasis (FFDM), and overall survival (OS) was determined using Kaplan-Meier analysis. Multivariate analysis (MVA) was performed using Cox regression.

      RESULTS: In this 153-patient cohort, stratifying by the optimum MTV (24 cm3 ) was prognostic for FFR (P = .0002), FFDM (P = .001), and OS (P < .0001). Metabolic tumor volume (MTV) was prognostic of FFR in AJCC 8th edition stage I/II (P = .03), and stage III patients (P = .04). On multivariate analysis only MTV was a significant factor for OS.

      CONCLUSION: Metabolic tumor volume (MTV) is a significant prognostic factor in HPV-associated OPSCCs, independent of AJCC 8th edition stage.

      PMID:30051553 | DOI:10.1002/hed.25337


      View details for PubMedID 30051553
  • Spatial relationship of 2-deoxy-2-[<sup>18</sup>F]-fluoro-D-glucose positron emission tomography and magnetic resonance diffusion imaging metrics in cervical cancer EJNMMI research
    Floberg JM, Fowler KJ, Fuser D, DeWees TA, Dehdashti F, Siegel BA, Wahl RL, Schwarz JK, Grigsby PW
    2018 Jun 15;8(1):52. doi: 10.1186/s13550-018-0403-7.
    • More

      BACKGROUND: This study investigated the spatial relationship of 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography ([18F]FDG-PET) standardized uptake values (SUVs) and apparent diffusion coefficients (ADCs) derived from magnetic resonance (MR) diffusion imaging on a voxel level using simultaneously acquired PET/MR data. We performed an institutional retrospective analysis of patients with newly diagnosed cervical cancer who received a pre-treatment simultaneously acquired [18F]FDG-PET/MR. Voxel SUV and ADC values, and global tumor metrics including maximum SUV (SUVmax), mean ADC (ADCmean), and mean tumor-to-muscle ADC ratio (ADCT/M) were compared. The impacts of histology, grade, and tumor volume on the voxel SUV to ADC relationship were also evaluated. The potential prognostic value of the voxel SUV/ADC relationship was evaluated in an exploratory analysis using Kaplan-Meier/log-rank and univariate Cox analysis.

      RESULTS: Seventeen patients with PET/MR scans were identified. There was a significant inverse correlation between SUVmax and ADCmean, and SUVmax and ADCT/M. In the voxelwise analysis, squamous cell carcinomas (SCCAs) and poorly differentiated tumors showed a consistent significant inverse correlation between voxel SUV and ADC values; adenocarcinomas (AdenoCAs) and well/moderately differentiated tumors did not. The strength of the voxel SUV/ADC correlation varied with metabolic tumor volume (MTV). On log-rank analysis, the correlation between voxel SUV/ADC values was prognostic of disease-free survival (DFS).

      CONCLUSIONS: In this hypothesis-generating study, a consistent inverse correlation between voxel SUV and ADC values was seen in SCCAs and poorly differentiated tumors. On univariate statistical analysis, correlation between voxel SUV and ADC values was prognostic for DFS.

      PMID:29904822 | PMC:PMC6003894 | DOI:10.1186/s13550-018-0403-7


      View details for PubMedID 29904822
  • Radioresistant Cervical Cancers Are Sensitive to Inhibition of Glycolysis and Redox Metabolism Cancer research
    Rashmi R, Huang X, Floberg JM, Elhammali AE, McCormick ML, Patti GJ, Spitz DR, Schwarz JK
    2018 Mar 15;78(6):1392-1403. doi: 10.1158/0008-5472.CAN-17-2367. Epub 2018 Jan 16.
    • More

      Highly glycolytic cervical cancers largely resist treatment by cisplatin and coadministered pelvic irradiation as the present standard of care. In this study, we investigated the effects of inhibiting glycolysis and thiol redox metabolism to evaluate them as alternate treatment strategies in these cancers. In a panel of multiple cervical cancer cell lines, we evaluated sensitivity to inhibition of glycolysis (2-deoxyglucose, 2-DG) with or without simultaneous inhibition of glutathione and thioredoxin metabolism (BSO/AUR). Intracellular levels of total and oxidized glutathione, thioredoxin reductase activity, and indirect measures of intracellular reactive oxygen species were compared before and after treatment. Highly radioresistant cells were the most sensitive to 2-DG, whereas intermediate radioresistant cells were sensitive to 2-DG plus BSO/AUR. In response to 2-DG/BSO/AUR treatment, we observed increased levels of intracellular oxidized glutathione, redox-sensitive dye oxidation, and decreased glucose utilization via multiple metabolic pathways including the tricarboxylic acid cycle. 2-DG/BSO/AUR treatment delayed the growth of tumors composed of intermediate radioresistant cells and effectively radiosensitized these tumors at clinically relevant radiation doses both in vitro and in vivo Overall, our results support inhibition of glycolysis and intracellular redox metabolism as an effective alternative drug strategy for the treatment of highly glycolytic and radioresistant cervical cancers.Significance: This study suggests a simple metabolic approach to strike at an apparent Achilles' heel in highly glycolytic, radioresistant forms of cervical cancers, possibly with broader applications in cancer therapy. Cancer Res; 78(6); 1392-403. ©2018 AACR.

      PMID:29339540 | PMC:PMC5856626 | DOI:10.1158/0008-5472.CAN-17-2367


      View details for PubMedID 29339540
  • Assessment of the treatment approach and survival outcomes in a modern cohort of patients with atypical teratoid rhabdoid tumors using the National Cancer Database Cancer
    Fischer-Valuck BW, Chen I, Srivastava AJ, Floberg JM, Rao YJ, King AA, Shinohara ET, Perkins SM
    2017 Feb 15;123(4):682-687. doi: 10.1002/cncr.30405. Epub 2016 Nov 2.
    • More

      BACKGROUND: Atypical teratoid rhabdoid tumors (ATRTs) are rare brain tumors that occur primarily in children under the age of 3 years. This report evaluates the treatment approach and survival outcomes in a large cohort of patients treated in the United States.

      METHODS: Using the National Cancer Database, the analysis included all ATRT patients aged 0 to 18 years who were diagnosed between 2004 and 2012 and had complete treatment data.

      RESULTS: Three hundred sixty-one ATRT patients were evaluated. The 5-year overall survival (OS) rate was 29.9%, and it was significantly lower for children who were less than 3 years old (5-year OS, 27.7%) versus those who were 3 years old or older (5-year OS, 37.5%; P < .001). The best outcome was seen for patients with localized disease who received trimodality therapy (surgery, chemotherapy, and radiation therapy [RT]) with a 5-year OS rate of 46.8%. The utilization of trimodality therapy significantly increased during the study period (27.7% in 2004-2008 vs 45.1% in 2009-2012; P < .01), largely because of the increased use of RT. In a multivariate analysis, treatment that did not utilize trimodality therapy was associated with significantly worse OS (hazard ratio, 2.52; 95% confidence interval (1.82-3.51). Children aged 0 to 2 years were significantly less likely to receive trimodality therapy because of decreased utilization of RT in this age group.

      CONCLUSIONS: The use of trimodality therapy significantly increased during the study period and was associated with improved outcomes. For patients with localized disease who received trimodality therapy, the OS rate at 5 years approached 50%. However, further research into the optimal management of children less than 3 years old is needed because of their significantly worse OS in comparison with older children. Cancer 2017;123:682-687. © 2016 American Cancer Society.

      PMID:27861763 | DOI:10.1002/cncr.30405


      View details for PubMedID 27861763
  • The sensitivity and specificity of F-DOPA PET in a movement disorder clinic American journal of nuclear medicine and molecular imaging
    Ibrahim N, Kusmirek J, Struck AF, Floberg JM, Perlman SB, Gallagher C, Hall LT
    2016 Jan 28;6(1):102-9. eCollection 2016.
    • More

      Idiopathic Parkinson's disease (PD) is the second most common neurodegenerative disorder. Early PD may present a diagnostic challenge with broad differential diagnoses that are not associated with nigral degeneration or striatal dopamine deficiency. Therefore, the early clinical diagnosis alone may not be accurate and this reinforces the importance of functional imaging targeting the pathophysiology of the disease process. (18)F-DOPA L-6-[(18)F] fluoro-3,4-dihydroxyphenylalnine ((18)F-DOPA) is a positron emission tomography (PET) agent that measures the uptake of dopamine precursors for assessment of presynaptic dopaminergic integrity and has been shown to accurately reflect the monoaminergic disturbances in PD. In this study, we aim to illustrate our local experience to determine the accuracy of (18)F-DOPA PET for diagnosis of PD. We studied a total of 27 patients. A retrospective analysis was carried out for all patients that underwent (18)F-DOPA PET brain scan for motor symptoms suspicious for PD between 2001-2008. Both qualitative and semi-quantitative analyses of the scans were performed. The patient's medical records were then assessed for length of follow-up, response to levodopa, clinical course of illness, and laterality of symptoms at time of (18)F-DOPA PET. The eventual diagnosis by the referring neurologist, movement disorder specialist, was used as the reference standard for further analysis. Of the 28 scans, we found that one was a false negative, 20 were true positives, and 7 were true negatives. The resultant values are Sensitivity 95.4% (95% CI: 100%-75.3%), Specificity 100% (95% CI: 100%-59.0%), PPV 100% (95% CI 100%-80.7%), and NPV 87.5% (95% CI: 99.5%-50.5%).

      PMID:27069770 | PMC:PMC4749509


      View details for PubMedID 27069770
  • Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy Science translational medicine
    Weichert JP, Clark PA, Kandela IK, Vaccaro AM, Clarke W, Longino MA, Pinchuk AN, Farhoud M, Swanson KI, Floberg JM, Grudzinski J, Titz B, Traynor AM, Chen H, Hall LT, Pazoles CJ, Pickhardt PJ, Kuo JS
    2014 Jun 11;6(240):240ra75. doi: 10.1126/scitranslmed.3007646.
    • More

      Many solid tumors contain an overabundance of phospholipid ethers relative to normal cells. Capitalizing on this difference, we created cancer-targeted alkylphosphocholine (APC) analogs through structure-activity analyses. Depending on the iodine isotope used, radioiodinated APC analog CLR1404 was used as either a positron emission tomography (PET) imaging ((124)I) or molecular radiotherapeutic ((131)I) agent. CLR1404 analogs displayed prolonged tumor-selective retention in 55 in vivo rodent and human cancer and cancer stem cell models. (131)I-CLR1404 also displayed efficacy (tumor growth suppression and survival extension) in a wide range of human tumor xenograft models. Human PET/CT (computed tomography) and SPECT (single-photon emission computed tomography)/CT imaging in advanced-cancer patients with (124)I-CLR1404 or (131)I-CLR1404, respectively, demonstrated selective uptake and prolonged retention in both primary and metastatic malignant tumors. Combined application of these chemically identical APC-based radioisosteres will enable personalized dual modality cancer therapy of using molecular (124)I-CLR1404 tumor imaging for planning (131)I-CLR1404 therapy.

      PMID:24920661 | PMC:PMC4336181 | DOI:10.1126/scitranslmed.3007646


      View details for PubMedID 24920661

Contact Information